

FITORREMEDIAÇÃO E MICRORREMEDIAÇÃO DE SOLOS CONTAMINADOS POR CHUMBO (PB) E CÁDMIO (CD)

Antônio Rony da Silva Pereira Rodrigues

Química, Centro de Ciências e Tecnologia, Universidade Estadual do Ceará, Fortaleza, Ceará, Brasil Ronny346silva@gmail.com

Resumo: Metais pesados como chumbo e cadmio podem causar danos graves a saúde humana, visto que não dissolvidos pelo organismo humano, maneiras sustentáveis de remover esses compostos do solo são a fitorremediação e a microrremediação. O presente estudo objetivou avaliar na literatura espécies envolvidas na remoção sustentável de chumbo e cadmio de solos contaminados. Optou-se por realizar uma revisão integrativa de literatura, através de uma ampla busca por estudos na bases de dados Scopus e Web of Science. Os resultados obtidos demostram que espécies como *Chrysopogon zizaniodes* e *Paspalum fasciculatum* podem ser uma alternativa para remoção de Cd e Pb, pois possuem resistência e atuam como bioacumuladores desses compostos, além de terem crescimento rápido. O fungo *Trichoderma asperellum* também se demostrou viável, pois possui taxa máxima de eficiência de remoção de 76,17% e 68,4% para cadmio e chumbo, respectivamente. O uso da fitorremediação e microrremediação é essencial para assegurar a saúde dos solos e a qualidade dos alimentos cultivados, por ser uma tecnologia de baixo custo e sustentável, pode ser inserida com facilidade pelos produtores rurais e pesquisadores.

Palavras-chave: Remediação ambiental, Meio ambiente, Química.

1. INTRODUÇÃO

Com o avanço da urbanização e industrialização, os níveis de metais pesados e metaloides também aumentaram, acarretando danos imensos a todo o ecossistema (SHARMA; SHARMA, 2022). Cobbina et al. (2015) definem metais pesados como um grupo de compostos químicos ubíquos e não-biodegradáveis. A concentração desses elementos no solo se encontra de forma natural, devido ao intemperismo da rocha mãe e de outros processos pedogenéticos no material originário do solo, esses metais desempenham

papel geoquímico durante a cristalização dos elementos mineralógicos da rocha (DE OLIVEIRA; MARINS, 2011).

A alta concentração de metais pesados nos solos agrícolas podem interferir negativamente na fertilidade, inibir o crescimento das plantas modificando a morfologia e a fisiologia das plantas, ameaçando a segurança alimentar (SALEEM et al., 2020). Os solos agrícolas não são apenas fonte de nutrientes para as espécies vegetais, mas também transferem contaminantes as plantas através de suas raízes. A contaminação dos solos com metais pesados tem aumentado drasticamente nos últimos anos, principalmente com metais como chumbo (Pb), cadmio (Cd), cobre (Cu) e níquel (Ni) (MAHMOUD; GHONEIM, 2016).

Diferente da maioria das substâncias tóxicas que são degradadas no corpo humano, e metabolizadas em metabólitos inofensivos, os metais pesados quando ingeridos através dos alimentos, são persistentes, ligando aos órgãos do corpo, como o chumbo nos ossos e o cadmio nos rins (KAN; MEIJER, 2007).

No objetivo de manter a saúde do solo e humana, estudos acerca de técnicas para remoção de cadmio e chumbo tem sido cada vez mais avaliados. No que se trata ao tratamento de chumbo em solo, processos atuais agrupam técnicas de conversões térmicas, eletrocinéticas ou técnicas físico-químicas que são rápidas, mas necessitam de alto investimento, devido a necessidade de equipamentos de elevado custo (RAI et al. 2019).

Consórcios microbianos demostram potencial frente a remoção de metais pesados no solo. Reações redox usando sistemas microbianos podem converter hidrocarbonetos aromáticos policíclicos e metais pesados em compostos não tóxicos ou menos tóxicos (YIN et al. 2019). Estudos demostram que o uso da microrremediação é eficaz na remoção de metais pesados como o cromo (Cr), o consorcio microbiano das cepas bacterianas YH-1 e YH-3 dos gêneros *Pseudomonas* sp. e *Rhodococcus* sp., respectivamente, demostraram remoção de cromo de 76,67% (SU et al. 2022).

Nesse contexto, avaliando o alto custo das atuais tecnologias aplicadas para remoção de metais pesados do solo e o alto impacto deste a saúde humana e ambiental, principalmente de compostos como chumbo e cadmio, o presente estudo objetivou avaliar através da literatura quais plantas e bactérias estão envolvidas e são viáveis nos processos de fitorremediação e microrremediação dos solos contaminados por cadmio e chumbo, a fim de promover uma síntese do conhecimento acerca da temática.

2. METODOLOGIA

O presente estudo trata-se de uma revisão integrativa da literatura (RI). A revisão integrativa de literatura é um método abrangente de revisão, que proporciona uma síntese do conhecimento e incorpora aplicabilidade dos resultados de estudos significativos acerca da temática avaliada (SOUZA et al. 2010).

Para construção da revisão integrativa é necessário realizar etapas distintas, sendo elas a identificação do tema, estabelecimento de critérios de inclusão e exclusão, categorização dos estudos, sumarização dos estudos incluídos, interpretação e apresentação da revisão/síntese do conhecimento (MENDES et al. 2008).

A busca por artigos foi realizada nas bases de dados Scopus (Elsevier) e Web of Science (Clarivate), através dos conjuntos de termos: (('contamination'/exp OR contamination) AND soils AND ('phytore-mediation'/exp OR phytoremediation) AND ('lead'/exp OR lead) AND ('cadmium'/exp OR cadmium) OR microremediation) AND ('Cd'/exp OR Cd) AND Pb). A busca foi feita utilizando os operados booleanos AND e OR, e os termos foram pesquisados em língua portuguesa, inglesa e espanhola, para ampliar o campo de busca.

Para seleção dos estudos, foram aplicados critérios de inclusão, sendo incluídos: artigos completos, em qualquer idioma, dentro do corte temporal de seis anos (2018-2023) e do tema de estudo proposto. Foram excluídos: artigos fora do tema e do recorte temporal, teses, dissertações e monografias, livros e capítulos de livros, resumos, artigos incompletos e trabalhos publicados em anais de eventos.

Inicialmente os trabalhos foram selecionados através da aplicação dos critérios de inclusão e remoção das duplicatas através do software gratuito *Rayyan*, como proposto por estudos de Ouzzani et al. (2016). Para remoção das duplicatas, foi adotado como critério comparar qual base o artigo aparecia primeiro (exemplificando: o artigo Y foi encontrado nas bases Z e X. Porém, na lista dos resultados fornecida, ele foi destacado primeiro pela base Z). Posteriormente, os artigos foram selecionados através da leitura dos títulos e resumos e em seguida foi feita a leitura minuciosa dos textos, com o propósito de confirmar os artigos que respondiam ao objetivo do estudo.

3. RESULTADOS E DISCUSSÃO

Foram recuperados nas fontes primárias de pesquisa 3.207 artigos, sendo 1.286 artigos da Scopus e 1.921 no Web of Science, 2.901 artigos foram excluídos na primeira fase de seleção por não está dentro dos critérios de inclusão e por duplicação, 306 estudos tiveram seus títulos e resumos lidos, sendo 53 selecionados para leitura na íntegra, onde 13 estudos foram selecionados para compor a revisão integrativa.

3.1 Fitorremediação de solos contaminados por cadmio (Cd) e chumbo (Pb)

Estudos demostram que a vetiver (*Chrysopogon zizaniodes*) é uma alternativa para remoção de metais pesados dos solos. Estudos em laboratório de Wasino et al. (2019), simulando contaminação de solo por metais pesados, com aplicação de 200 ppm PbCO $_3$ e CdCl $_2$ (concentração de 180,42 \pm 2,63 mg/kg de Pb e 103,57 \pm 5,26 mg/kg de Cd), foram aplicados a amostras de solo, utilizando a vetiver como espécie fitorremediadora durante 4 meses, tendo seu fator de bioacumulação medida através da equação,

$$BF_{raiz} = (Metal_{raiz})/(Metal_{solo})$$
 (1)

sendo, BF – fator de bioacumulação; Metal raiz – concentração de metais nas raízes da espécie e Metal solo – concentração de metais no solo. Os resultados demostraram que a concentração de Pb nas raízes de *C. zizaniodes* aumentou de 2,22 mg/kg para 54,27 mg/kg durante o tratamento, mas o acúmulo mais significativo foi na parte aérea, cuja concentração de Pb aumento de 0,91 mg/kg para 23,21 mg/kg. Quanto a bioacumulação de cadmio, no 4º mês de remediação foram medidos nas raízes concentração de 430,32 mg/kg.

Gravand et al. (2021), demostrou resultados semelhantes utilizando a *C. zizaniodes*. A espécie conseguiu demostrar taxa de absorção de 95% para chumbo, cádmio, manganês e níquel nas raízes e parte aérea. O tratamento para chumbo alcançou taxa de absorção média de 282,45 mg/kg. Para cadmio a taxa de absorção alcança 248,3 mg/kg, que representa 65,5% de cadmio absorvido do solo contaminado.

3.2 Microrremediação de solos contaminados por cadmio (Cd) e chumbo (Pb)

O uso da espécie fúngica *Simplicillium chinense* como microrremediador de chumbo e cadmio em solos contaminados com concentração de Cd: 10, 30, 50, 100, 150 e 200 mg/L e Pb: 10, 30, 50 , 100, 150 e 200 mg/L, revelaram resultados significativos. A análise dos dados se deu através das isotermas de absorção (Eq. 2).

$$Q_{\rm e} = Q_{\rm max} \frac{K_L C_{\rm e}}{1 + K_I C_{\rm e}} \tag{2}$$

Sendo, Q_e (g/kg DCW) os metais absorvidos em *S. chinense*, e C_e (g/L) a concentração de equilíbrio de metal no sobrenadante, Q_{max} (g/kg DCW) a capacidade máxima de biossorção, K_L (L/mg) é a constante de Langmuir, que está associada a energia de adsorção. Através de microscopia eletrônica de varredura

antes e depois da biossorção dos metais, foi percebido que antes a superfície da *S. chinense* era lisa, e sem presença de Cd e Pb, depois foi notado a presença de Cd e Pb em forma de cristais. No que se trata a biossorção dos metais pela *S. chinense*, as isotermas de biossorção alcançaram taxas de 88,5 e 57,8 g/kg para Cd e Pb, respectivamente (JIN et al. 2019).

A associação fúngica de *Mucor circinelloides* e *Trichoderma asperellum* como agentes remediadores de chumbo e cadmio foi avaliado por Zhang et al. (2018). A inoculação de *M. circinelloides* e *T. asperellum* reduziu as concentrações de formas disponíveis de Cd ou Pb no solo, a redução da especiação disponível de Cd e Pb foi de até 42,46% e 47,51%, respectivamente. Outros estudos já demostraram a eficácia da *T. asperellum* na remoção de cádmio e chumbo, com eficiência máxima de remoção de 76,17% e 68,4%, para cadmio e chumbo, respectivamente (MOHSENZADEH; SHAHROKHI 2014, HOSEINZADEH et al., 2017).

4. CONCLUSÕES

Após a análise dos estudos que compõem a revisão e notável que as tecnologias de fitorremediação e microrremediação na remoção de chumbo e cadmio de solos contaminados, é viável e eficiente. O emprego de plantas e microrganismos na degradação ou absorção desses compostos químicos e a tecnologia com menor custo e sustentável para manter a qualidade a saúde do solo.

O uso de espécies como *Chrysopogon zizaniodes* e *Paspalum fasciculatum* são alternativas para manutenção da saúde do solo, pois além de remover os metais pesados, atuam como moduladores da rizosfera, atuando no aumento da matéria orgânica e redução da acidez do solo, assim favorecendo o crescimento e desenvolvimento vegetal. O avanço dos estudos acerca da fitorremediação e microrremediação dos solos contaminados por metais pesados é essencial para garantir a saúde ambiental, bem como a saúde humana.

REFERÊNCIAS

Cobbina, S.J., Chen, Y., Zhou, Z., Wu, X., Zhao, T., Zhang, Z., Feng, W., Wang, W., Li, Q., Wu, X., Yang, L. (2015). Toxicity assessment due to sub-chronic exposure to individual and mixtures of four toxic heavy metals. *Journal of Hazardous Materials*. 294: 109-120.

De Oliveira, R.C., Marins, R.V. (2011). Dinâmica de metais-traço em solo e ambiente sedimentar estuarino como um fator determinante no aporte desses contaminantes para o ambiente aquático: revisão. *Revista Virtual de Química*. 3(2): 88-102.

Gravand, F., Rahnavard, A., Pour, G.M. (2021). Investigation of vetiver grass capability in phytoremediation of contaminated soils with heavy metals (Pb, Cd, Mn, and Ni). *Soil and Sediment Contamination: An International Journal*. 30(2): 163-186.

Hoseinzadeh, S., Shahabivand, S., Aliloo, A.A. (2017). Toxic metals accumulation in *Trichoderma* asperellum and T. harzianum. *Microbiology*. 86(6): 728-736.

Jin, Z., Deng, S., Wen, Y., Jin, Y., Pan, L., Zhang, Y., Zhang, D. (2019). Application of *Simplicillium chinense* for Cd and Pb biosorption and enhancing heavy metal phytoremediation of soils. *Science of the Total Environment*. 697: 134148.

Kan, C.A., Meijer, G.A.L. (2007). The risk of contamination of food with toxic substances present in animal feed. *Animal Feed Science and Technology*. 133(1-2): 84-108.

Mahmoud, E.K., Ghoneim, A.M. (2016). Effect of polluted water on soil and plant contamination by heavy metals in El-Mahla El-Kobra, Egypt. *Solid Earth*. 7(2): 703-711.

Mendes, K.D.S., Silveira, R.C.C.P., Galvão, C.M. (2008). Revisão integrativa: método de pesquisa para a incorporação de evidências na saúde e na enfermagem. *Texto Contexto Enfermagem*. 17(4): 758-64.

Mohsenzadeh, F., Shahrokhi, F. (2014). Biological removing of Cadmium from contaminated media by fungal biomass of Trichoderma species. *Journal of Environmental Health Science and Engineering*. 12: 1-7.

Ouzzani, M., Hammady, H., Fedorowicz, Z., Elmagarmid, A. (2016). Rayyan—a web and mobile app for systematic reviews. *Systematic reviews*. 5: 1-10.

Rai, P.K., Lee, S.S., Zhang, M., Tsang, Y.F., Kim, K.H. (2019). Heavy metals in food crops: Health risks, fate, mechanisms, and management. *Environment International*. 125: 365-385.

Saleem, M. H., Ali, S., Rehman, M., Hasanuzzaman, M., Rizwan, M., Irshad, S., Qari, S.H. (2020). Jute: A potential candidate for phytoremediation of metals-a review. *Plants (Basel)*. 9(2).

Sharma, U., Sharma, J.G. (2022). Nanotechnology for the bioremediation of heavy metals and metalloids. *Journal of Applied Biology and Biotechnology*. 10(5): 34-43.

Souza, M. T., Silva, M. D., Carvalho, R. (2010). Revisão integrativa: o que é e como fazer. *Einstein*. 8(1): 102-106.

Su, Y., Sun, S., Liu, Q., Zhao, C., Li, L., Chen, S., Tang, F. (2022). Characterization of the simultaneous degradation of pyrene and removal of cr(VI) by a bacteria consortium YH. *Science of the Total Environment*. 853.

Wasino, R., Likitlersuang, S., Janjaroen, D. (2019). The performance of vetivers (*Chrysopogon zizaniodes* and *Chrysopogon nemoralis*) on heavy metals phytoremediation. *International journal of phytoremediation*. 21(7): 624-633.

Yin, K., Wang, Q., Lv, M., Chen, L. (2019). Microorganism remediation strategies towards heavy metals. *Chemical Engineering Journal*. 360: 1553-1563.