

USO DO ARDUINO PARA SISTEMAS DE IRRIGAÇÃO E CONTROLE SUSTENTÁVEL DA ÁGUA: UMA BREVE REVISÃO BIBLIOGRÁFICA

Akaz Marinho da Silva

Engenharia da Computação, Faculdade de Computação, Universidade Federal do Pará, Castanhal, Pará, Brasil, akazms252000@gmail.com

Avla Marinho da Silva

Bacharel em Ciências Biológicas, Castanhal, Pará, Brasil, aylamarinho.silva@gmail.com

Resumo: O uso excessivo dos recursos hídricos é um dos principais problemas ambientais, visto que a água é um recurso limitado e de extrema importância para a manutenção das formas de vida existentes no planeta, portanto é necessário o desenvolvimento de sistemas associados a tecnologia, como irrigação automática. Dentre os métodos tecnológicos destaca-se o uso do arduino, uma ferramenta open source de baixo custo. Neste sentido, o trabalho tem como objetivo analisar por meio de revisão bibliográfica como o arduino, contribui para a criação e eficiência de sistemas de irrigação automáticos. Para tanto, utilizou-se como procedimento metodológico a pesquisa qualitativa em duas bases de dados, Scielo e Google Scholar, delimitando a pesquisa entre os anos de 2019 a 2023, utilizando as palavras chaves "sistema de irrigação", "sustentabilidade" e "arduino", e como critério de escolha, foram selecionados apenas artigos científicos em inglês e português, resultado em 425 documentos. Como resultado, foram selecionados 11 artigos classificados dentro do critério metodológico, dentre os quais observa-se uma proximidade quanto ao objetivo, onde os autores buscaram desenvolver sistemas de irrigação automáticos baseados no uso de placas de prototipagem Arduino visando reduzir o desperdício de água por meio do controle eficaz. Notase que os trabalhos são implementados para diferentes ambientes e setores, como agricultura familiar, e além de utilizarem placas de arduino também implementam o uso de sensores para monitorar os parâmetros ambientais e obter resultados mais precisos que contribuem para melhores decisões quanto ao controle eficaz da água. Nos artigos verificou-se também a busca por inovações tecnológicas de baixo custo associada a Internet das Coisas (IoT) para monitoramento em tempo real dos dados. Portanto, conclui-se que o uso do Arduino no desenvolvimento de sistemas de irrigação automática é eficiente e acessível apresenta capacidade de controle e monitoramento da água, contribui para melhores condições ambientais reduzindo o desperdício e auxiliando na sustentabilidade.

Palavras-chave: Placas de prototipagem, Tecnologia, Recurso Hídrico, Sustentabilidade.

1. INTRODUÇÃO

Considerando que o uso excessivo e sem controle da água é um dos principais problemas ambientais atuais, visto que a água é um recurso é limitado, e mediante o risco de escassez é necessário a implementação de sistemas inteligentes baseados nas tecnologias atuais como a utilização de irrigação automática com o propósito de auxiliar o produtor a dispor de melhores condições de cultivo e rendimento (Veerachamy et al., 2022). Sabe-se que o uso da tecnologia está cada vez mais expandido, devido a sua importância na resolução de problema, e um dos métodos tecnológicos recentes é baseado na construção de sistemas utilizando placas de prototipagem arduino, uma ferramenta *open source* de fácil utilização e baixo custo.

Segundo Zhu et al., (2022) o arduino está sendo amplamente utilizado para o desenvolvimento de sistemas de irrigação. Os autores ainda destacam que em muitos projetos, essa ferramenta está sendo associada a sensores de parâmetros ambientais, a fim de estabelecer maior controle para irrigação. Levando em consideração que a água é um recurso natural fundamental para a vida, porém é limitada, fazse necessário a conservação por meio do desenvolvimento sustentável associado a metodologias tecnológicas. Neste sentido, por meio de levantamento bibliográfico o presente trabalho tem como objetivo analisar como o uso de tecnologias de baixo custo como o arduino, contribui para a criação e eficiência de sistemas de irrigação automáticos.

2. METODOLOGIA

O procedimento metodológico para alcançar o objetivo proposto é de abordagem qualitativa a fim de identificar publicações relacionadas ao tema. Com esse propósito, foram utilizadas as bases de dados Scielo e Google Scholar, com recorte entre os anos de 2019 a 2023, utilizando as palavras chaves "sistema de irrigação", "sustentabilidade" e "arduino", sendo encontrados 425 trabalhos. Como critério de escolha, levou-se em consideração a inclusão apenas de artigos científicos publicados tanto em inglês e português, a partir da leitura dos resumos, totalizando 11 trabalhos. Portanto, foram excluídos trabalhos acadêmicos como teses e dissertações, publicações em eventos científicos e capítulos de livros.

3. RESULTADOS E DISCUSÃO

Durante a pesquisa para alcançar o objetivo proposto, notou-se que há poucos trabalhos referente ao tema na categoria artigo científico, sendo a maioria trabalhos acadêmicos, portanto as buscas resultaram em apenas 11 artigos, com o maior número encontrados no Google Scholar. Dentre os artigos analisados conforme descrito na Tabela I, nota-se que os autores objetivaram o desenvolvimento de sistemas de irrigação automatizados, aliando métodos tecnológicos aos conhecimentos ambientais.

APRESENTAM:

SUSTENTABILIDADE, INDICADORES E GESTÃO **DE RECURSOS HÍDRICOS**

24/11

evento 100% online e gratuito

Tabela I- Resumo dos artigos analisados na revisão bibliográfica.

Autores	Artigos	Resultados
Ferreira (2019)	Redução do desperdício de recursos hídricos no cultivo hortaliças por meio de sistema inteligente de irrigação.	Coleta de dados eficiente, o sistema pode ser incorporado na agricultura familiar a fim de racionalizar o uso da água.
Rivas-Sánchez, Moreno-Pérez e Roldán-Cañas (2019)	Environment Control with Low- Cost Microcontrollers and Micro- processors: Application for Green Walls.	O uso do arduino possibilitou o monito- ramento de parâmetros ambientais ga- rantindo condições ideais para a parede verde.
Pereira et al. (2020)	Automation of irrigation by electronic tensiometry based on the arduino hardware platform.	O sistema de automação foi eficaz no controle da irrigação em ambiente controlado.
Santos e Silva (2020)	O uso da internet das coisas para o desenvolvimento sustentável da agricultura.	Os dados coletados geraram informações importantes no auxílio à tomada de decisão precisas.
Carvalho et al. (2021)	Production and initial growth of forest species seedlings using sewage sludge and automated irrigation.	A irrigação automática e o lodo de esgoto como substrato viabiliza a economia de água e produz mudas de espécies florestais com qualidade.
Medina e Spozito (2021)	Reaproveitamento de águas pluviais e de condensação de ar- condicionado para uso em irrigação inteligente no IFSP – Campus Votuporanga.	O sistema tem grande potencial de se tor- nar uma solução viável e sustentável.
Borges, Beuter e Fereira (2022)	Prototype of automated irrigation system using raspberry pi and solar energy.	O sistema obteve e exibiu no aplicativo dados de umidade do solo, consumo de água e energia.
Lima e Lourenço Neto (2022)	Water resources monitor system in agriculture.	Obteve-se um sistema completo de co- leta e análise dos dados à exibição atra- vés de telas dinâmicas em tempo real.

Sanches et al. (2022)	Low-cost and high-efficiency automated tensiometer for real-time irrigation monitoring.	O sistema automatizado apresentou ca- pacidade de monitorar a tensão de água do solo em tempo real.
Sousa, Nascimento e Santos (2022)	Experiência na construção de um sistema de irrigação automatizado de uma horta no ensino médio técnico.	Envolvimento efetivo dos alunos e eficiência do arduino para irrigação controlada e automatizada.
Anchesqui e Mestria (2023)	Desenvolvimento de um sistema de irrigação de baixo custo.	Observou-se uma eficiente coleta de dados e sistema de irrigação efetivo para conservação de recursos.

Mediante os resultados, observa-se proximidade entre os trabalhos, como o de Sanches et al., (2022) e Pereira et al., (2020), visando o controle e uso racional do recurso hídrico, utilizaram tensiômetros e uso de tecnologia de baixo custo, considerando a umidade do solo para a distribuição adequada da água. Carvalho et al., (2021), propôs o uso de substratos alternativos associado a irrigação automática para economia de água e qualidade de produção de espécies arbóreas da Mata Atlântica.

Os autores Medina e Spozito (2021) implementaram um sistema de captação de água da chuva e de climatizadores de ar, destinado para reuso na irrigação de gramados, e assim como Santos e Silva (2020), justificam em seus artigos que a otimização e gestão do recurso hídrico contribui de forma positiva para a sustentabilidade, pois o consumo da água será realizado de forma controlada reduzindo o desperdício.

Com relação ao trabalho de Anchesqui e Mestria (2023) além de desenvolver o sistema automático, os autores reuniram diferentes dados em tempo real com o objetivo de auxiliar os pequenos produtores a tomarem decisões assertivas sobre plantio, fertilização e colheita. Com objetivos similares, Lima e Lourenço Neto (2022), produziram um sistema para obtenção de dados sobre a necessidade hídrica das plantas nos diferentes estágios de crescimento, tendo como finalidade reduzir o consumo excessivo da água.

Já no estudo de Ferreira (2019) foi destacado que a dificuldade em determinar a quantidade adequada de água para as culturas é um dos principais motivos para o desperdício de água, neste sentido os autores produziram o sistema de irrigação por meio do controle de umidade visando contribuir com a sustentabilidade e evitar perda do recurso hídrico na agricultura familiar. Quanto a Borges, Beuter, Ferreira (2022) o objetivo principal foi desenvolver e analisar um sistema de irrigação automático de baixo custo utilizando Raspberry Pi 3 e painéis fotovoltaicos, para o aumento da produtividade, principalmente para pequenos produtores, devido ao acesso limitado a algumas tecnologias.

Os trabalhos que diferem dos demais são o de Sousa, Nascimento e Santos (2022) que desenvolveram um sistema automático para horta integrando atividades interdisciplinares com alunos do ensino médio, utilizando tecnologias acessíveis em locais onde a escassez é recorrente. Rivas-Sanchez, Moreno-Perez e Roldan-Cañas (2019) implementaram um sistema para paredes verdes, objetivando eficiência da irrigação, redução de energia e sustentabilidade por meio do monitoramento, a fim de garantir o crescimento das plantas. Os autores defendem que utilizar ferramentas de baixo custo evidencia uma maior obtenção de dados semelhantes aos dispositivos de alta qualidade com a mesma eficiência.

Outro aspecto a ser analisado nos artigos, é o uso de sensores associados ao arduino para monitoramento de diferentes parâmetros como temperatura, umidade, fluxo de água e chuva, que contribuem para precisão dos sistemas, além da implementação de internet das coisas (IoT) viabilizando o acompanhamento em tempo real e remoto dos dados coletados. No geral, os trabalhos apresentam similaridades na busca por inovações de baixo custo e tecnologias de automação, por apresentar vantagens na irrigação e eficiência no gerenciamento da água.

4. CONSIDERAÇÕES FINAIS

Mediante as análises dos artigos, observou-se que os sistemas de irrigação automáticos desenvolvidos com placas de prototipagem arduino apresentam capacidade de controle e monitoramento da água, e também proporcionam melhores condições ambientais, como melhoria do solo e meio ambiente, visto que o consumo de água será menor e o desperdício reduzido, ademais, pode ser aderido para diferentes ambientes em pequena e média escala. O arduino como uma tecnologia de baixo custo é eficiente e acessível, auxiliando na produção sustentável e conservação dos recursos naturais.

REFERÊNCIA

ANCHESQUI, L. D.; MESTRIA, M. Desenvolvimento de um sistema de irrigação de baixo custo. **Revista Foco (Interdisciplinary Studies Journal**), v. 16, n. 8, 2023.

BORGES, R. C.; BEUTER, C. H.; FERREIRA, G. M. S. Prototype of automated irrigation system using raspberry pi and solar energy. **Revista Engenharia na Agricultura-REVENG**, pág. 424-438, 2022.

CARVALHO, D. F.; BUENO, M. M.; LELES, P. S. dos S.; ABREU, J. F. G.; MARTINS, R. da C. F.; MEDICI, L. O. Production and initial growth of forest species seedlings using sewage sludge and automated irrigation. **Ciência e Agrotecnologia**, v. 45, p. 1-14, e017321, 2021.

FERREIRA, F. D. de O. Redução do desperdício de recursos hídricos no cultivo hortaliças por meio de sistema inteligente de irrigação. **International Journal Semiarid**, v. 2, n. 2, p. 75 – 83, 2019.

LIMA, L. A.; LOURENÇO NETO, J. Water resources monitor system in agriculture. **Revista Ingi – Indicação Geográfica e Inovação**, v. 6, n.1, p. 1490-1498, 2022.

MEDINA, A. G. C.; SPOZITO, R. S. Reaproveitamento de águas pluviais e de condensação de ar-condicionado para uso em irrigação inteligente no IFSP—Campus Votuporanga. REGRASP-Revista para Graduandos/IFSP-Câmpus São Paulo, v. 6, n. 2, p. 23-41, 2021.

PEREIRA, R. M.; SANDRI, D.; RIOS, G. F. A.; SOUSA, D. A de O. Automation of irrigation by electronic tensiometry based on the arduino hardware platform. **Revista Ambiente & Água,** v. 15, 2020.

RIVAS-SÁNCHEZ, Y. A.; MORENO-PÉREZ, M. F.; ROLDÁN-CAÑAS, J. Environment control with low-cost microcontrollers and microprocessors: Application for green walls. **Sustainability**, v. 11, n. 3, p. 782, 2019.

SANCHES, A. C.; ALVES, C. O.; JESUS, F. L. F. de; THEODORO, F. L.; CRUZ, T. A. C. da; GOMES, E. P. Low-cost and high-efficiency automated tensiometer for real-time irrigation monitoring. **Revista Brasileira de Engenharia Agrícola e Ambiental**, v. 26, p. 390-395, 2022.

SANTOS, P. M. dos; SILVA, T. E. S. da. O uso da internet das coisas para o desenvolvimento sustentável da agricultura. **Revista Multidisciplinar do Sertão**, v. 2, n. 1, p. 13-24, 2020.

SOUSA, C. R. de; NASCIMENTO, G. A. S.; SANTOS, M. P. Experiência na construção de um sistema de irrigação automatizado de uma horta no ensino médio técnico. **Scientia: Revista Científica Multidisciplinar**, v. 7, n. 2, p. 77-95, 2022.

VEERACHAMY, R.; RAMAR, R.; BALAJI, S.; SHARMILA, L. Autonomous Application Controls on Smart Irrigation. **Computers and Electrical Engineering,** v. 100, n. 107855, p. 1-9, 2022.

ZHU, H. H.; HUANG, Y. X.; HUANG, H.; GARG, A.; MEI, G. X.; SONG, H. H. Development and Evaluation of Arduino-Based Automatic Irrigation System for Regulation of Soil Moisture. **International Journal of Geosynthetics and Ground Engineering**, v. 8, n. 1, p. 1-13, 2022. https://doi-org.ez3.periodicos.capes.gov.br/10.1007/s40891-022-00360-8.